0.6x^2+7x+20=0

Simple and best practice solution for 0.6x^2+7x+20=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0.6x^2+7x+20=0 equation:


Simplifying
0.6x2 + 7x + 20 = 0

Reorder the terms:
20 + 7x + 0.6x2 = 0

Solving
20 + 7x + 0.6x2 = 0

Solving for variable 'x'.

Begin completing the square.  Divide all terms by
0.6 the coefficient of the squared term: 

Divide each side by '0.6'.
33.33333333 + 11.66666667x + x2 = 0

Move the constant term to the right:

Add '-33.33333333' to each side of the equation.
33.33333333 + 11.66666667x + -33.33333333 + x2 = 0 + -33.33333333

Reorder the terms:
33.33333333 + -33.33333333 + 11.66666667x + x2 = 0 + -33.33333333

Combine like terms: 33.33333333 + -33.33333333 = 0.00000000
0.00000000 + 11.66666667x + x2 = 0 + -33.33333333
11.66666667x + x2 = 0 + -33.33333333

Combine like terms: 0 + -33.33333333 = -33.33333333
11.66666667x + x2 = -33.33333333

The x term is 11.66666667x.  Take half its coefficient (5.833333335).
Square it (34.02777780) and add it to both sides.

Add '34.02777780' to each side of the equation.
11.66666667x + 34.02777780 + x2 = -33.33333333 + 34.02777780

Reorder the terms:
34.02777780 + 11.66666667x + x2 = -33.33333333 + 34.02777780

Combine like terms: -33.33333333 + 34.02777780 = 0.69444447
34.02777780 + 11.66666667x + x2 = 0.69444447

Factor a perfect square on the left side:
(x + 5.833333335)(x + 5.833333335) = 0.69444447

Calculate the square root of the right side: 0.833333349

Break this problem into two subproblems by setting 
(x + 5.833333335) equal to 0.833333349 and -0.833333349.

Subproblem 1

x + 5.833333335 = 0.833333349 Simplifying x + 5.833333335 = 0.833333349 Reorder the terms: 5.833333335 + x = 0.833333349 Solving 5.833333335 + x = 0.833333349 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.833333335' to each side of the equation. 5.833333335 + -5.833333335 + x = 0.833333349 + -5.833333335 Combine like terms: 5.833333335 + -5.833333335 = 0.000000000 0.000000000 + x = 0.833333349 + -5.833333335 x = 0.833333349 + -5.833333335 Combine like terms: 0.833333349 + -5.833333335 = -4.999999986 x = -4.999999986 Simplifying x = -4.999999986

Subproblem 2

x + 5.833333335 = -0.833333349 Simplifying x + 5.833333335 = -0.833333349 Reorder the terms: 5.833333335 + x = -0.833333349 Solving 5.833333335 + x = -0.833333349 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-5.833333335' to each side of the equation. 5.833333335 + -5.833333335 + x = -0.833333349 + -5.833333335 Combine like terms: 5.833333335 + -5.833333335 = 0.000000000 0.000000000 + x = -0.833333349 + -5.833333335 x = -0.833333349 + -5.833333335 Combine like terms: -0.833333349 + -5.833333335 = -6.666666684 x = -6.666666684 Simplifying x = -6.666666684

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-4.999999986, -6.666666684}

See similar equations:

| 25x^2+7x-96=0 | | -6-7(c+10)=x | | 56x^2+45=2222 | | 8/11(n-10)=1.8 | | 70x-30(7-x)=426 | | 67x+6=645 | | x-3(x+2)-2=x+4 | | -13+5(y-4)=4(y-8) | | -62=-(-x-3)-6(4x+6) | | 3x^5+15x=18x^2 | | (n+3)+2= | | 3v^2+3v-13=-3+2v^2 | | 26d+2377960=2067959+125d | | 3(2n-1)-5(4n+3)=10 | | -21=4x-x^2 | | 2y-(y-8)=3y+18 | | 12=7v-v^2 | | 8(1+4x)=8(6x+3) | | -12x+4=-49x-20 | | (-72)(-9)= | | 26d+2377960=3000000 | | (7x+9)= | | 4x+3x-1=24+12x | | 23=-5x-17 | | 13-(-6+7)+9= | | 5(r+13)-5.75r=35 | | 0=.5x^2-4 | | x+2(3)=6 | | 15x+40y=1975 | | 3x-45=50 | | (-8)(5)(-1)= | | x^2-16x-85=0 |

Equations solver categories